
© 2012 IBM CorporationJune 24, 2012

The DB2Night Show Episode #77

Temporal Queries and Analytics in
an IBM InfoSphere Warehouse V10

Environment

Pat Bates, WW Technical Sales for Big Data and Warehousing, jpbates@us.ibm.com

June 25, 2012

© 2012 IBM Corporation3

Temporal Tables - Business Benefits

Provides an increased business insight to clients
– Can access not just currently committed data, but data at any period of time

since data collection inception
– Can incorporate business logic and policies that are a function of time, like

effective dates and validity enforcement

Provides a mechanism for data change tracking to meet data
compliance rules
– Can easily determine ALL data values for a particular business entity over time

(even deleted values)

Provides recovery for business data that was erroneously updated or
deleted without having to perform complex database recovery
scenarios
– Can retrieve data that was inadvertently deleted or updated and use this

information to restore the affected data

© 2012 IBM Corporation4

Temporal Tables - Business Benefits

Provides lower application development and maintenance costs
– Reduce application logic and shorten application development time by

eliminating custom solutions involving triggers, additional application logic, and
increased data complexity

–

Provides flexibility and application transparency for use even with
packaged applications
– Does not require application changes in order to utilize Time Travel Query

© 2012 IBM Corporation5

Two Notions of Time and Events

Database (or System) Event
– Tracks events at the moment they occur in the database system
– Useful to track data changes in the data warehouse
– Examples include

• Reporting on transaction-based processes
• Auditability and history of changes to records in the warehouse
• Recovery of updated / deleted information

Business Event
– Tracks events according to their applicability according to business rules
– Useful for reporting and analytics based on when certain information is in force
– Examples include

• Policy effective dates, e.g., insurance coverage
• Promotional periods, e.g., sales and marketing campaigns
• Planned changes to information, e.g., changes to customer attributes or

product hierarchies

Bitemporal
– Tracking, reporting and analytics that combine both

© 2012 IBM Corporation6

Simple Example

March 1
– John switches to a new car insurance

March 28
– The coverage amount of John's policy is increased, to be effective April 1

March 29
– John is involved in a minor accident

April 5
– John submits a claim for the damage to his car

April 10
– John requests a policy change to reduce his deductible from $500 to $250.

This change takes effect April 15

April 17
– An agent at the insurance company reviews John's claim from April 5 to

authorize payment

Which coverage amount and deductible should be applied?

6

© 2012 IBM Corporation11

How to Define a System-Period Temporal Table

1. CREATE a table with a SYSTEM_TIME attribute

2. CREATE the history table

3. ADD VERSIONING to the system-period temporal table to establish a link to

the history table

CREATE TABLE travel(
trip_name CHAR(30) NOT NULL PRIMARY KEY,
destination CHAR(12) NOT NULL,
departure_date DATE NOT NULL,
price DECIMAL (8,2) NOT NULL,
sys_start TIMESTAMP(12) NOT NULL generated always as row begin implicitly hidden,
sys_end TIMESTAMP(12) NOT NULL generated always as row end implicitly hidden,
tx_start TIMESTAMP(12) generated always as transaction start id implicitly hidden,
PERIOD SYSTEM_TIME (sys_start, sys_end)) in travel_space;

Captures the begin and end times when the data in a row is current

CREATE TABLE travel_history like travel in hist_space;
[ALTER TABLE travel_history APPEND ON;] OPTIONAL

ALTER TABLE travel
ADD VERSIONING USE HISTORY TABLE travel_history;

© 2012 IBM Corporation12

Insert Data Into a System-Period Temporal Table

Add new trips: Amazonia, departing on 10/28/2011,
and Ski Heavenly Valley, departing on 3/1/2011

INSERT INTO travel VALUES (‘Amazonia’,’Brazil’,’10/28/2011’,1000.00)

INSERT INTO travel VALUES (‘Ski Heavenly Valley’, ‘California’,’03/01/2011’,400.00)

Current Date = January 1, 2011

trip_name destination
departure_

date
price sys_start sys_end

Amazonia Brazil 10/28/2011 1000.00 01/01/2011 12/30/9999

Ski Heavenly
Valley

California 03/01/2011 400.00 01/01/2011
12/30/9999

System validity period
(inclusive, exclusive)

Both sys_start and sys_end columns are inserted by DB2, not the
application. For simplicity, they are represented here as DATEs, rather
than TIMESTAMPs

© 2012 IBM Corporation13

Alter and Update a System-Period Temporal Table

Destination name is not explicit enough. Alter the DESTINATION column to make it longer

– Current Date = February 15, 2011

Now UPDATE the destination column for Ski Heavenly Valley to make it clearer

– Note: history table modification is automatically done by DB2

trip_name destination departure_date price sys_start sys_end

Amazonia Brazil 10/28/2011 1000.00 01/01/2011 12/30/9999

Ski Heavenly
Valley

Lake Tahoe, CA 03/01/2011 400.00 02/15/2011 12/30/9999

ALTER TABLE travel ALTER COLUMN destination SET DATA TYPE VARCHAR(50)

UPDATE travel SET destination = ‘Lake Tahoe, CA’
WHERE trip_name = ‘Ski Heavenly Valley’

trip_name destination departure_date price sys_start sys_end

Ski Heavenly
Valley

California 03/01/2011 400.00 01/01/2011 02/15/2011

System validity period inclusive, exclusive)

New sys_start date

DB2 inserted row into history table automatically and supplied sys_start and sys_end dates

Base table

History table

© 2012 IBM Corporation14

Delete from a System-Period Temporal Table

We are no longer offering the Ski Heavenly Valley trip – DELETE it
– Current Date = April 1, 2011

trip_name destination departure_date price sys_start sys_end

Amazonia Brazil 10/28/2011 1000.00 01/01/2011 12/30/9999

DELETE FROM travel WHERE trip_name = ‘Ski Heavenly Valley’

trip_name destination departure_date price sys_start sys_end

Ski Heavenly
Valley

California 03/01/2011 400.00 01/01/2011 02/15/2011

Ski Heavenly
Valley

Lake Tahoe, CA 03/01/2011 400.00 02/15/2011 04/01/2011

System validity period
(inclusive, exclusive)

DB2 inserted row into history table automatically and supplied sys_start and sys_end dates

Base table

History table

Ski Heavenly Valley has been removed from base table

© 2012 IBM Corporation15

Query the past: what trips were available on 03/01/2011 for less than $500?
– Current date = May 1, 2011

– Result: Ski Heavenly Valley

Query the present: what trips are currently available to Brazil?

– Result: Amazonia

Query the past and the present: In 2011, how many different tours
were offered?

– Result: 2

Query a System-Period Temporal Table
(These queries access the table on the previous page)

SELECT trip_name FROM travel FOR SYSTEM_TIME AS OF ’03/01/2011’
WHERE price < 500.00

SELECT trip_name FROM travel WHERE destination = ‘Brazil’

SELECT COUNT (DISTINCT trip_name) FROM travel
FOR SYSTEM_TIME BETWEEN ’01/01/2011’ AND ’01/01/2012’

Defaults to the current table only - functions as if we added
FOR SYSTEM TIME AS OF CURRENT DATE

© 2012 IBM Corporation19

How to Define an Application-Period Temporal Table

CREATE a table with a BUSINESS_TIME attribute

CREATE TABLE travel
(trip_name CHAR(25) NOT NULL,
destination CHAR(8) NOT NULL,
departure_date DATE NOT NULL,
price DECIMAL(8,2) NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
PERIOD BUSINESS_TIME (bus_start, bus_end),
PRIMARY KEY (trip_name, BUSINESS_TIME WITHOUT OVERLAPS));

PERIOD (bus_start, bus_end)

is (inclusive, exclusive)
The bus_start column in the

PERIOD clause must be less than
the bus_end column

trip_name plus the bus_start and bus_end PERIOD form a unique primary key.

DB2 enforces that there are no overlapping PERIODs for trip_name.

© 2012 IBM Corporation20

Insert Data into a Application-Period Temporal Table

Add new trip: Manu Wilderness, departing on 08/02/2011
– Current date = May 01, 2011

INSERT INTO travel VALUES (
‘Manu Wilderness’,’Peru’,’08/02/2011’,1500.00,’05/01/2011’,’01/01/2012’)

trip_name destination
departure_

date
price bus_start bus_end

Manu
Wilderness

Peru 08/02/2011 1500.00 05/01/2011 01/01/2012

BUSINESS_TIME period

(inclusive, exclusive)

bus-start and bus_end columns are inserted by the application, not DB2

© 2012 IBM Corporation27

Combine application-period (ATT) and system-period (STT) capabilities

Every row has a pair of TIMESTAMPs (SYSTEM_TIME period) set by DB2 and a pair of
TIMESTAMP or DATE columns (BUSINESS_TIME period) set by the application

You can query in both business_time and system_time
– Example: What trips were offered on June 20, 2011, as recorded in the database on

May 10, 2011?

Similar INSERT/UPDATE/DELETE behavior to ATTs
– Rows inserted/split/deleted as required

UPDATE and DELETE cause automatic insertion into the corresponding STT

history table

SELECT will go to STT history as needed to get rows

Bi-temporal Tables

trip_name Destination departure_date price bus_start bus_end sys_start sys_end

Alligator
Swamp

Louisiana 02/15/2011 50.00 02/01/2011 02/16/2011 02/01/2011 12/30/9999

SELECT trip_name, destination FROM TRAVEL FOR BUSINESS_TIME AS OF
’06/20/2011’ FOR SYSTEM_TIME AS OF ’2011-05-10’;

© 2012 IBM Corporation28

How to Define a Bi-temporal Table

CREATE TABLE travel(
trip_name CHAR(25) NOT NULL,
destination CHAR(8) NOT NULL,
departure_date DATE NOT NULL,
price DECIMAL(8,2) NOT NULL,
BUS_START DATE NOT NULL ,
BUS_END DATE NOT NULL,
SYS_START TIMESTAMP(12) NOT NULL

GENERATED ALWAYS AS ROW BEGIN IMPLICITLY HIDDEN,
SYS_END TIMESTAMP(12) NOT NULL

GENERATED ALWAYS AS ROW END IMPLICITLY HIDDEN,
TX_ID TIMESTAMP(12)

GENERATED ALWAYS AS TRANSACTION START ID IMPLICITLY HIDDEN,
PERIOD SYSTEM_TIME (SYS_START, SYS_END),
PERIOD BUSINESS_TIME (BUS_START, BUS_END),
PRIMARY KEY (trip_name, BUSINESS_TIME WITHOUT OVERLAPS));

CREATE TABLE travel_history LIKE travel;

ALTER TABLE travel ADD VERSIONING USE HISTORY TABLE travel_history;

Application-temporal (ATT)
keywords

System-temporal (STT) keywords

© 2012 IBM Corporation32

Bi-temporal: Query in Both System Time and Business Time

What departure dates for Alligator Swamp were available for booking
on 03/01/2011, as recorded in the database on 02/01/2011?
– Current date – June 1, 2011

SELECT departure_date FROM travel FOR BUSINESS_TIME AS OF
’03/01/2011’ FOR SYSTEM_TIME AS OF TIMESTAMP
‘2011-02-01-00.00.00.000000’ WHERE trip_name = ‘Alligator Swamp’

Base table

History table

trip_name destination departure_date price bus_start bus_end sys_start sys_end

Alligator
Swamp

Louisiana 02/15/2011 50.00 02/01/2011 02/16/2011 02/01/2011 12/30/9999

Alligator
Swamp

Louisiana 05/15/2011 50.00 02/16/2011 05/16/2011 02/01/2011 12/30/9999

Alligator
Swamp

Louisiana 09/15/2011 50.00 05/16/2011 06/01/2011 06/01/2011 12/30/2099

Alligator
Swamp

Louisiana 09/15/2011 50.00 09/01/2011 09/16/2011 06/01/2011 12/30/9999

trip_name destination departure_date price bus_start bus_end sys_start sys_end

Alligator
Swamp

Louisiana 10/15/2011 50.00 05/16/2011 10/16/2011 02/01/2011 02/02/2011

Alligator
Swamp

Louisiana 09/15/2011 50.00 05/16/2011 09/16/2011 02/02/2011 06/01/2011

05/15/2011

© 2012 IBM Corporation34

Views may be defined on system-period temporal tables (base and history),

application-period temporal tables, or bi-temporal tables

All syntax (e.g. FOR PORTION OF, AS OF, FROM…TO, etc.) is supported

for views

Two types of views may be defined for temporal tables
– View definition containing FOR BUSINESS_TIME or FOR SYSTEM_TIME

• Restricts the view to a period in time

• Restriction: queries against the view can’t also contain FOR BUSINESS TIME
or FOR SYSTEM TIME

• Would lead to ambiguity or conflicts

– View definition without FOR BUSINESS_TIME or FOR SYSTEM_TIME
• Data from all periods is available to the query

Views on Temporal Table

CREATE VIEW travel_view AS SELECT * FROM travel FOR
SYSTEM_TIME BETWEEN ’06/30/2011’ AND ‘01/01/2012’;
SELECT * FROM travel_view;

CREATE VIEW travel_view AS SELECT * FROM travel;
SELECT * FROM travel_view FOR BUSINESS_TIME AS OF ’01/01/2011’;

© 2012 IBM Corporation36

Special Registers

You can set the clock back or forward to a specific time for a
given session
– No changes required for application!

Special registers
– CURRENT TEMPORAL BUSINESS_TIME
– CURRENT TEMPORAL SYSTEM_TIME

Setting one or both of these registers allows you to query
– Past point in SYSTEM_TIME
– Past or future point in BUSINESS_TIME

Implicit period specification attached to SQL statements
– FOR BUSINESS_TIME AS OF CURRENT TEMPORAL BUSINESS_TIME
– FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME

DB2 SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP – 1 YEAR
DB2 SET CURRENT TEMPORAL BUSINESS_TIME = ‘2012-12-31’

© 2012 IBM Corporation42

Time Travel Tables Summarized

Temporal tables enable time travel!

Temporal tables may be
– System-period temporal tables (STTs)

• Managed by DB2
• DB2 maintains a separate history table

– Application-period temporal tables (ATTs)
• Managed by the application
• Current and historical rows are all in the base table

– Bi-temporal tables
• Combine System-period and Application-period temporal tables

Can create views on STTs or ATTs for SELECT or UPDATE

Can use special registers to query past or future points in time

Can convert current tables to STTs or ATTs

